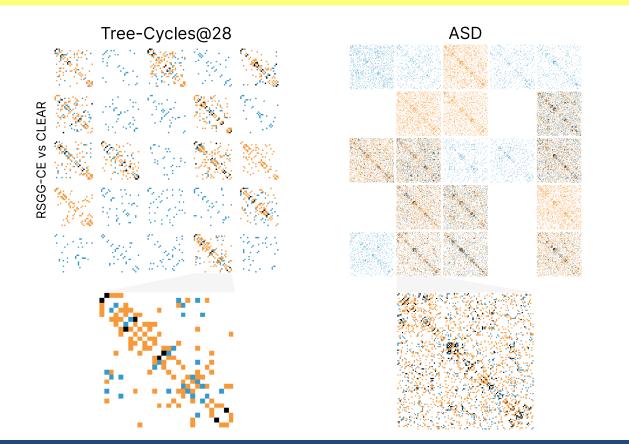
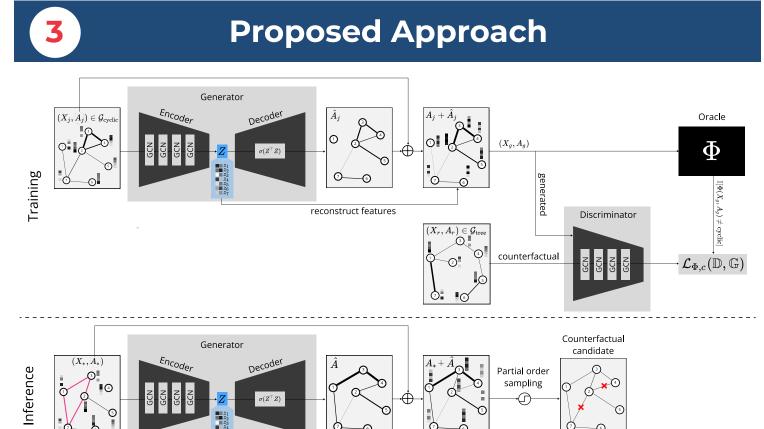
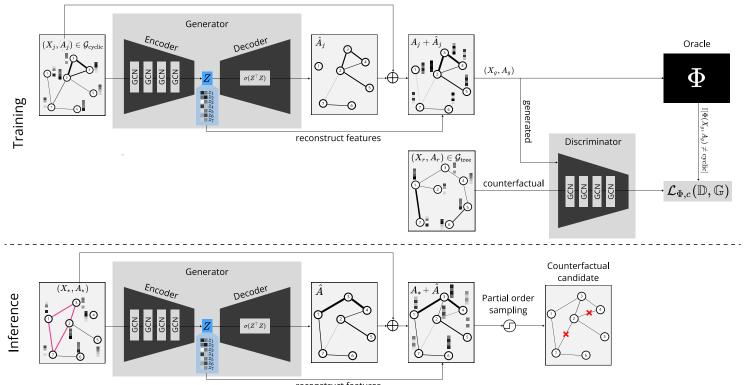
Robust Stochastic Gr / ph Generator for Counterfactual Explanations Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo

TL;DR: We propose RSGG-CE that leverages graph-based GANs and the generator's learned latent space to generate plausible and valid counterfactual candidates.





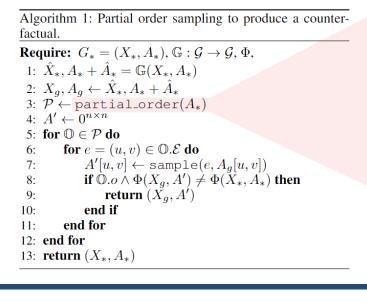


- RSGG-CE's **discriminator guides** the generator to learn the production of **counterfactuals** aligned with the opposite class
- predictions in the discriminator on the generated data

$$\mathcal{L}_{\Phi,c}(\mathbb{D},\mathbb{G}) = \sum_{(X_r,A_r)\in\mathcal{G}_{\neg c}} igg(\log \mathbb{D}(Y \mid X_r,A_r) \ \sum_{(X_g,A_g)\in\mathbb{G}(\mathcal{G}_c)} igg(\mathbb{I}[\Phi(X_g,A_g)
eq c]\log \mathbb{D}(Y \mid X_g,A_g) \ eq c]$$

$$+ \sum_{\substack{(X_j,A_j)\in\mathcal{G}_c,\ \hat{X}_j,A_j+\hat{A}_j=\mathbb{G}(X_j,A_j)}} \log\Big(1-\mathbb{D}(Y\mid\hat{X},A_j+\hat{A}_j)\Big)$$

probabilities from the generator's latent space to generate counterfactuals



Graph Counterfactual Explainability

- Generative Graph Counterfactual Explainability (GCE)
- SoA is generally **constrained** to the **input data** (search-based GCE) and relies on learned **perturbation masks** (learning-based GCE)
- Defaulting to factual-based explainers falters when dual classes clash (e.g., acyclic vs cyclic graphs)
- Crossing the decision boundary isn't enough; one must be close to the original instance

How the literature approached GCE

- Learning-based GCE [1-5] generate masks of relevant features given a graph G; combine this mask with G to derive G'; feed G' to the oracle Φ and update the mask
- CLEAR [5] uses a VAE to encode graphs into a latent representation which, at inference, is used to generate complete stochastic graphs.
- G-CounteRGAN [6,7] relies on 2D convolutions on the adjacency matrix of graphs

[1] Abrate, C.; and Bonchi, F. 2021. Counterfactual graphs for explainable classification of brain networks. In KDD'21

[2] Liu, Y.; Chen, C.; Liu, Y.; Zhang, X.; and Xie, S. 2021. Multi-objective Explanations of GNN Predictions. In ICDM'21

[3] Nguyen, T. M.; Quinn, T. P.; Nguyen, T.; and Tran, T. 2022. Explaining Black Box Drug Target Prediction through Model Agnostic Counterfactual Samples IEEE/ACM Transactions on Computational Biology and Bioinformatics

[4] Numeroso, D.; and Bacciu, D. 2021. Meg: Generating molecular counterfactual explanations for deep graph networks. In IJCNN'21 [5] Ma, J.; Guo, R.; Mishra, S.; Zhang, A.; and Li, J. 2022. CLEAR: Generative Counterfactual Explanations on Graphs. In NeurIPS'22

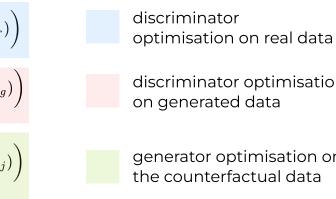
[6] Nemirovsky, D.; Thiebaut, N.; Xu, Y.; and Gupta, A. 2022. CounteRGAN: Generating counterfactuals for real-time recourse and interpretability using residual GANs. In UAI'22

[7] Prado-Romero, M. A.; Prenkaj, B.; and Stilo, G. 2023. Revisiting CounteRGAN for Counterfactual Explainability of Graphs. In ICLR'23 @ Tiny Paper Track

G

The 38th Annual AAAI **Conference on Artificial Intelligenc** FEBRUARY 20-27, 2024 | VANCOUVER, CANADA

• **Training**: Modify the generator's optimization and include the oracle's



discriminator optimisation on generated data

generator optimisation on the counterfactual data

• Inference: Sample edges with partial order guided by the learned

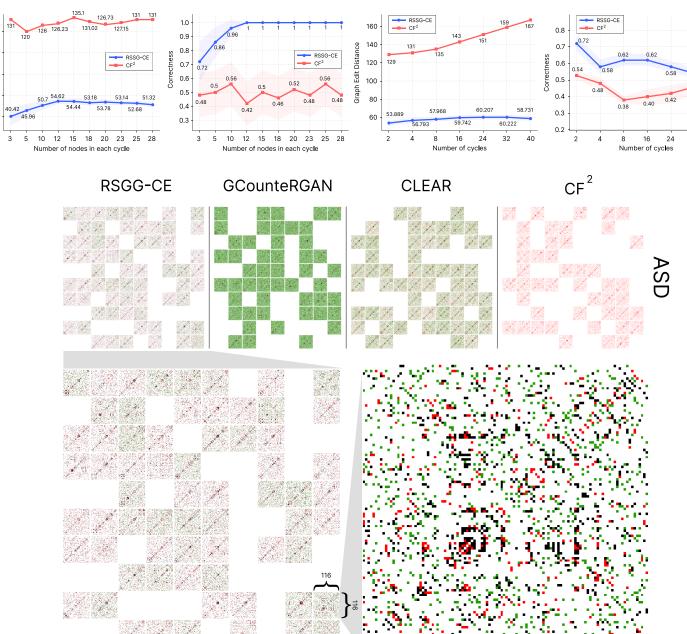
Algorithm 2: Example of partial_order **Require:** $A \in \mathbb{R}^{n \times n}$

- 1: $E \leftarrow \text{positive}_edges(A)$ \triangleright Get the set of edges from the adjacency matrix A
- 2: $\neg E \leftarrow \text{negative}_edges(A)$ \triangleright Get the set of non-existing edges from the adjacency matrix A
- 3: $\mathcal{P} \leftarrow \{(\mathcal{E} = E, o = 0), (\mathcal{E} = \neg E, o = 1)\} \triangleright Build the partial$ order of the existing and non-existing edges with group tuples consisting of edge set \mathcal{E} , and oracle verification guard o. 4: return \mathcal{P}

					55011			
		Methods						
		MEG †	CF^2 †	CLEAR ‡	G-CounteRGAN ‡	RSGG-CE		
TC	Runtime (s) ↓	272.110	4.811	25.151	632.542	0.083		
	GED↓	159.700	27.564	61.686	182.414	11.000		
	Oracle Calls ↓	0.000	0.000	4341.600	1321.000	121.660		
	Correctness ↑	0.530	0.496	0.504	0.504	0.885		
	Sparsity \downarrow	2.510	0.496	1.110	3.283	0.199		
	Fidelity ↑	0.530	0.496	0.504	0.504	0.885		
	Oracle Acc. ↑	1.000	1.000	1.000	1.000	1.000		
ASD	Runtime (s) ↓	×	15.313	275.884	969.255	80.000		
	GED↓	\times	655.661	1479.114	3183.729	234.853		
	Oracle Calls ↓	\times	0.000	5339.455	1182.818	794.805		
	Correctness ↑	×	0.463	0.554	0.529	0.603		
	Sparsity \downarrow	×	0.850	1.917	4.125	0.304		
	Fidelity ↑	×	0.287	<u>0.319</u>	0.265	0.287		
	Oracle Acc. ↑	×	0.773	0.773	0.773	0.773		

Take-away lesson

 RSGG-CE is the best performer with a gain of 66.98% and 19.65% in Correctness over the second-performing method in TC and ASD



- RSGG-CE can do **both** edge additions and removals
- RSGG-CE scales perfectly when the number of nodes in a cycle increases since its **GED plateaus** reaching a perfect **correctness of 1**

, ,				
E				
n	I			
			52	
0.	54	0.	52	
0.	46	0.	48	