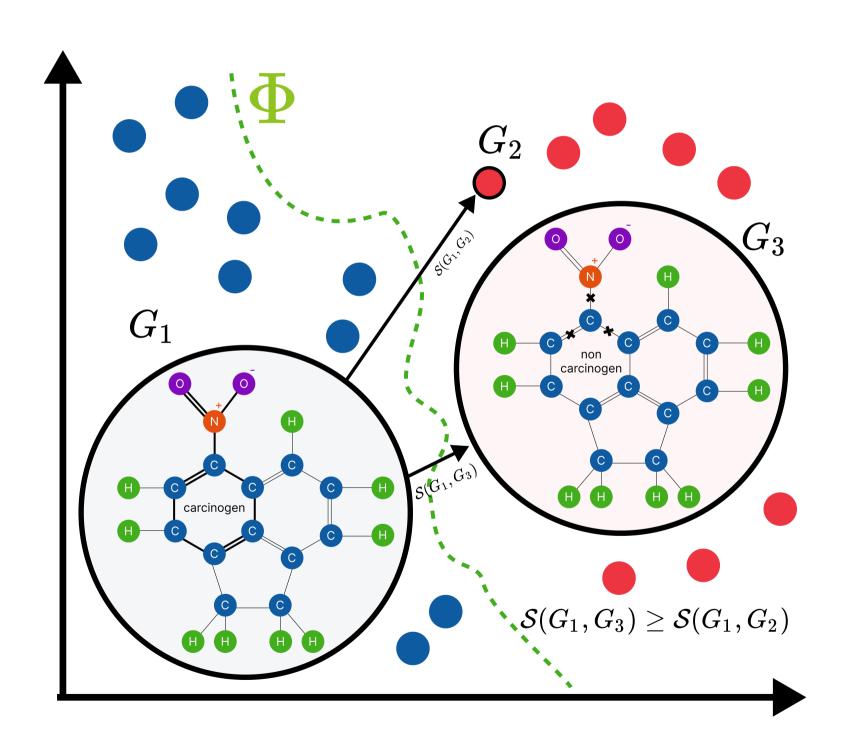


Robust Stochastic Graph Generator for Counterfactual Explanations

Mario Alfonso Prado-Romero*, Bardh Prenkaj*, Giovanni Stilo The 38th Annual AAAI Conference on Artificial Intelligence

Graph Counterfactual Explainability (GCE)



$$\mathcal{E}_{\Phi}\left(G
ight) = rg \max_{G' \in \mathcal{G}', G
eq G', \Phi(G)
eq \Phi(G')} \mathcal{S}\left(G, G'
ight) \ \mathcal{E}_{\Phi}(G) = rg \max_{G' \in \mathcal{G}'} P\left(G' \mid G, \Phi\left(G
ight),
eg \Phi\left(G
ight)
ight)$$

Problems with GCE

- SoA is generally constrained to the input data (search-based GCE) and relies on learned perturbation masks (learning-based GCE)
- Defaulting to factual-based explainers falters when dual classes clash (e.g., acyclic vs cyclic graphs)

 Crossing the decision boundary isn't enough; one must be close to the original instance

What's been done until now...

- Learning-based GCE [1-5]:
 - 1) generate masks of relevant features given a graph G;
 - 2) combine this mask with G to derive G';
 - 3) feed G' to the oracle Φ and update the mask
- CLEAR [5] uses a VAE to encode graphs into a latent representation which, at inference, is used to generate complete stochastic graphs
- G-CounteRGAN [6,7] relies on 2D convolutions on the adjacency matrix of graphs

Intuition

- Using a generative approach possibly a GAN allows having brand new in-distribution counterfactuals examples;
- We'll exploit the generator to engender counterfactual candidates
- Use the discriminator to guide the generator in learning how to cross the decision boundary

Classic GANs vs GANs for counterfactuals

$$\mathcal{L}(\mathbb{D},\mathbb{G}) = \underbrace{\mathbb{E}_{(X_i,A_i)\in\mathcal{G}}\!\!\left[\log\mathbb{D}(Y\mid X_i,A_i)
ight]}_{ ext{discriminator optimisation}} + \underbrace{\mathbb{E}_{X_j\in P_z,A_j\in P_{z'}, top \hat{X}_j,A_j+\hat{A}_j=\mathbb{G}(X_j,A_j)}\!\!\left[\log(1-\mathbb{D}(Y\mid \hat{X}_j,A_j+\hat{A}_j))
ight]}_{ ext{generator optimisation}}$$

$$\mathcal{L}_{\Phi,c}(\mathbb{D},\mathbb{G}) = \sum_{(X_r,A_r)\in\mathcal{G}_{
eg_c}} \left(\log \mathbb{D}(Y \,|\, X_r,A_r)
ight)$$

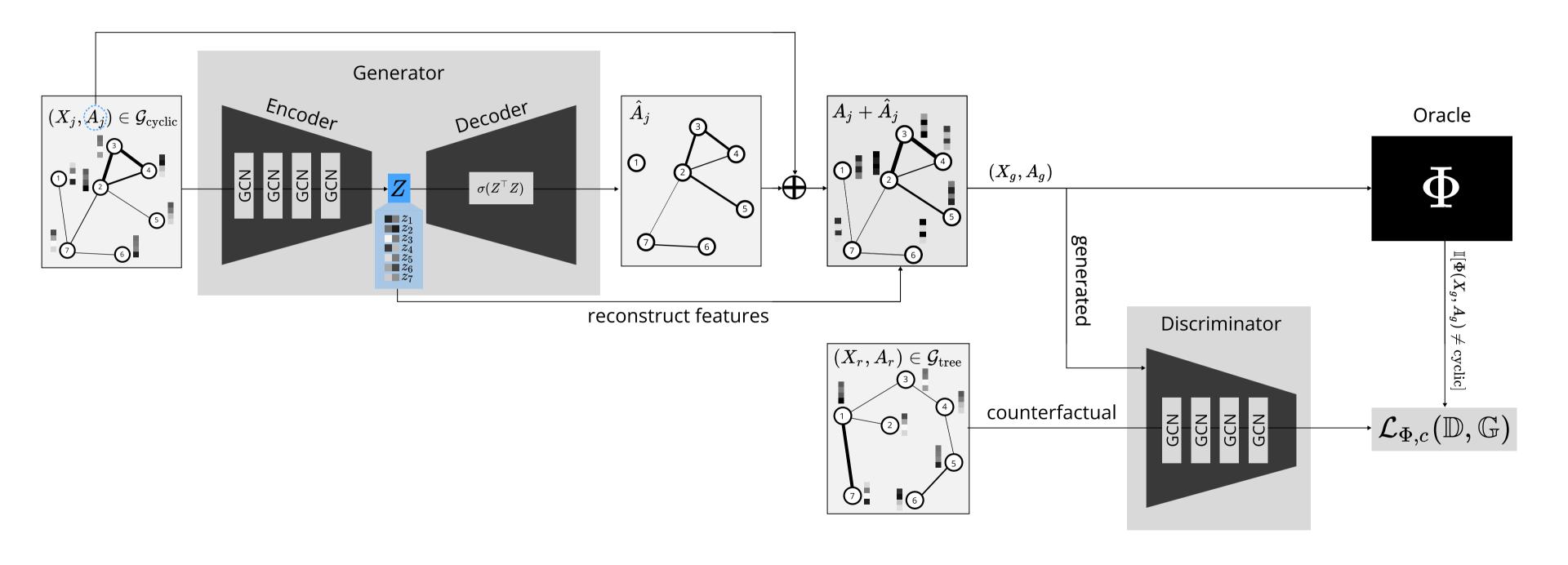
discriminator optimisation on real data

$$+\sum_{(X_g,A_g)\in \mathbb{G}(\mathcal{G}_c)} \underbrace{\left(\mathbb{I}[\Phi(X_g,A_g)
eq c]\log \mathbb{D}(Y\mid X_g,A_g)
ight)}$$

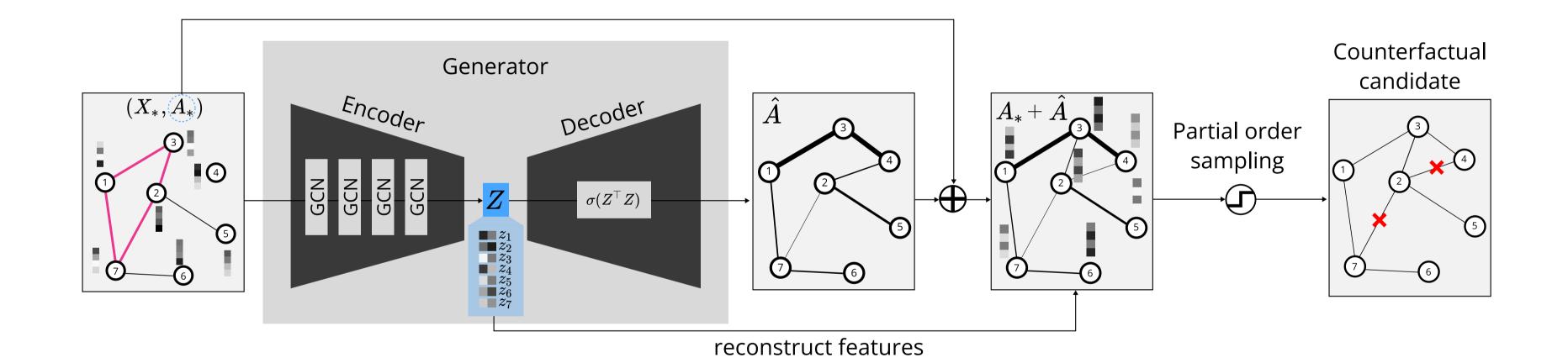
discriminator optimisation on generated data

$$+\sum_{\substack{(X_j,A_j)\in\mathcal{G}_c,\ \hat{X}_j,A_j+\hat{A}_j=\mathbb{G}(X_j,A_j)}}\log\left(1-\mathbb{D}(Y\mid\hat{X},A_j+\hat{A}_j)
ight)} \log\left(1-\mathbb{D}(Y\mid\hat{X},A_j+\hat{A}_j)
ight)$$

A closer look at RSGG-CE



RSGG-CE (inference)



RSGG-CE (inference)

Algorithm 1: Partial order sampling to produce a counterfactual.

```
Require: G_* = (X_*, A_*), \mathbb{G} : \mathcal{G} \to \mathcal{G}, \Phi,
 1: \hat{X}_*, A_* + \hat{A}_* = \mathbb{G}(X_*, A_*)
 2: X_q, A_q \leftarrow \hat{X}_*, A_* + \hat{A}_*
 3: \mathcal{P} \leftarrow \text{partial\_order}(A_*)
 4: A' \leftarrow 0^{n \times n}
 5: for \mathbb{O} \in \mathcal{P} do
           for e = (u, v) \in \mathbb{O}.\mathcal{E} do
                 A'[u,v] \leftarrow \text{sample}(e,A_q[u,v])
                 if \mathbb{O}.o \wedge \Phi(X_q, A') \neq \Phi(X_*, A_*) then
                       return (X_q, A')
                 end if
10:
           end for
11:
12: end for
13: return (X_*, A_*)
```

Algorithm 2: Example of partial_order

Require: $A \in \mathbb{R}^{n \times n}$

- 1: $E \leftarrow \text{positive_edges}(A) \qquad \triangleright \textit{Get the set of edges}$ from the adjacency matrix A
- 2: $\neg E \leftarrow \text{negative_edges}(A)$ $\triangleright Get the set of non-existing edges from the adjacency matrix <math>A$
- 3: $\mathcal{P} \leftarrow \{(\mathcal{E} = E, o = 0), (\mathcal{E} = \neg E, o = 1)\}$ \triangleright Build the partial order of the existing and non-existing edges with group tuples consisting of edge set \mathcal{E} , and oracle verification guard o.
- 4: return \mathcal{P}

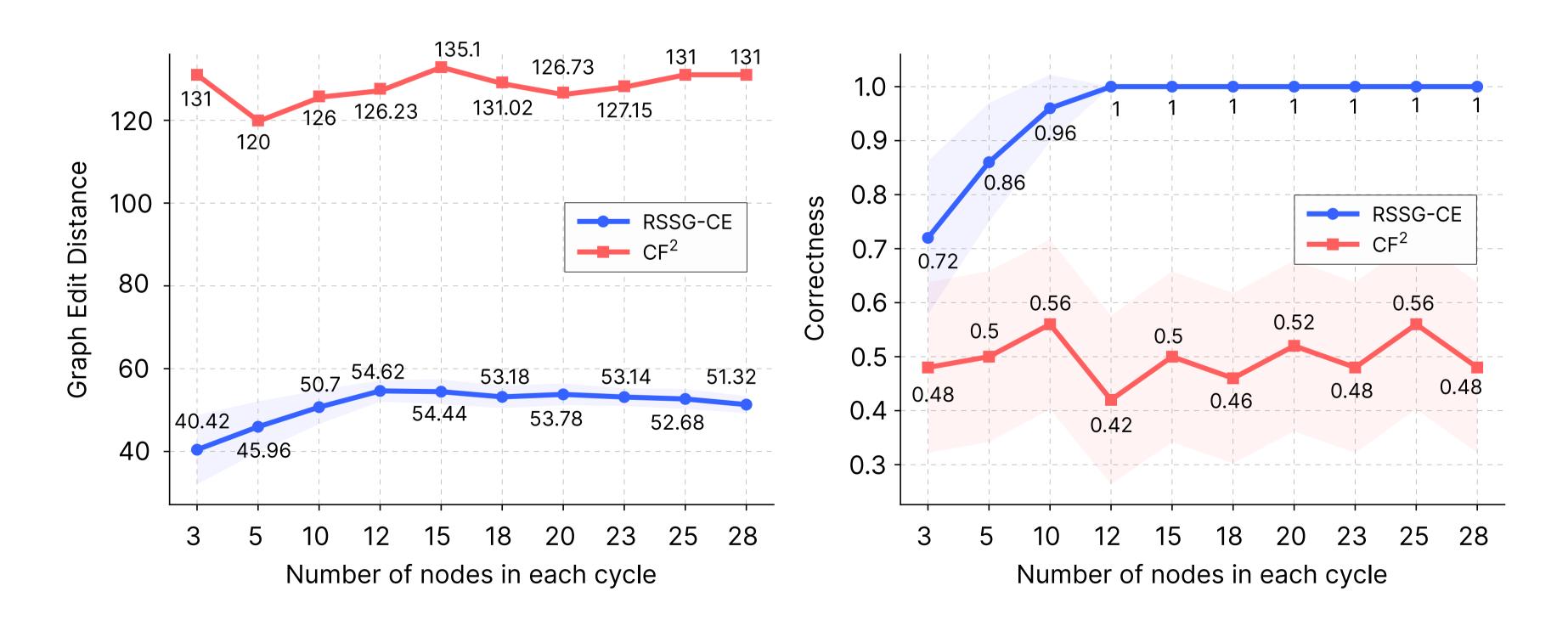
Pretty good actually when you have dual classes.

What we learned through RSGG-CE

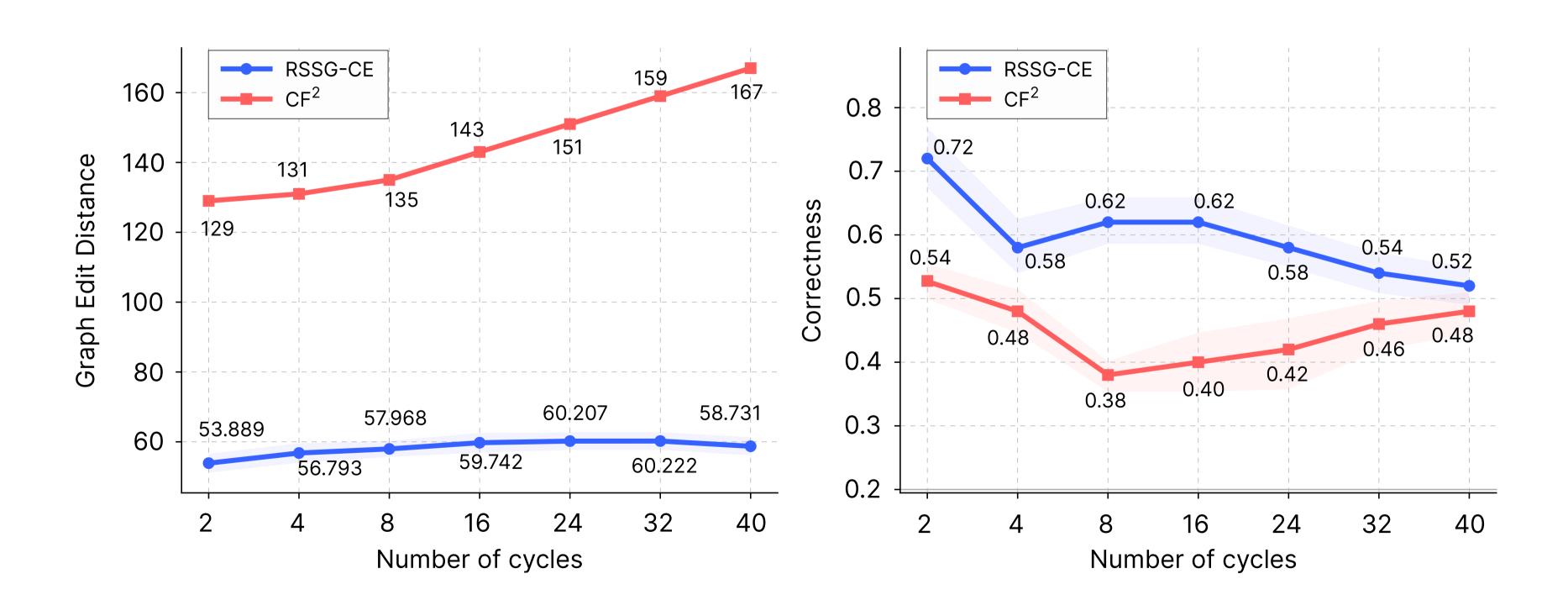
RSGG-CE has a gain of 66.98% and 19.65% in correctness.

		Methods				
		MEG †	$\mathbb{C}F^2$ †	CLEAR ‡	G-CounteRGAN ‡	RSGG-CE ‡
TC	Runtime (s) ↓	272.110	4.811	25.151	632.542	0.083
	GED↓	159.700	27.564	61.686	182.414	11.000
	Oracle Calls ↓	0.000	0.000	4341.600	1321.000	121.660
	Correctness ↑	0.530	0.496	0.504	0.504	0.885
	Sparsity ↓	2.510	0.496	1.110	3.283	0.199
	Fidelity ↑	0.530	0.496	0.504	0.504	0.885
	Oracle Acc. ↑	1.000	1.000	1.000	1.000	1.000
ASD	Runtime (s) ↓	×	15.313	275.884	969.255	80.000
	GED ↓	×	655.661	1479.114	3183.729	234.853
	Oracle Calls ↓	×	0.000	5339.455	1182.818	794.805
	Correctness ↑	×	0.463	0.554	0.529	0.603
	Sparsity ↓	×	0.850	1.917	4.125	0.304
	Fidelity ↑	X	0.287	0.319	0.265	0.287
	Oracle Acc. ↑	×	0.773	0.773	0.773	0.773

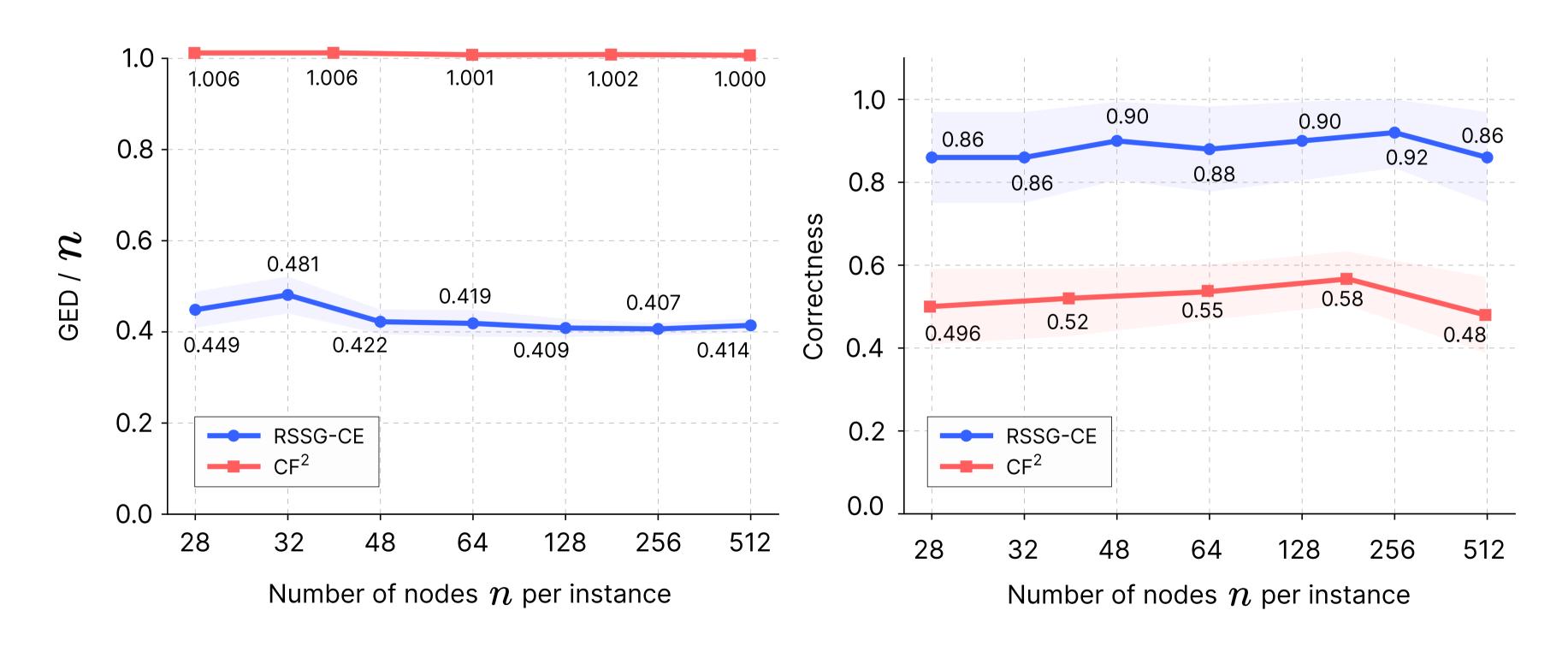
We scale perfectly when the number of nodes in a cycle increases (GED plateaus, and correctness is 1).



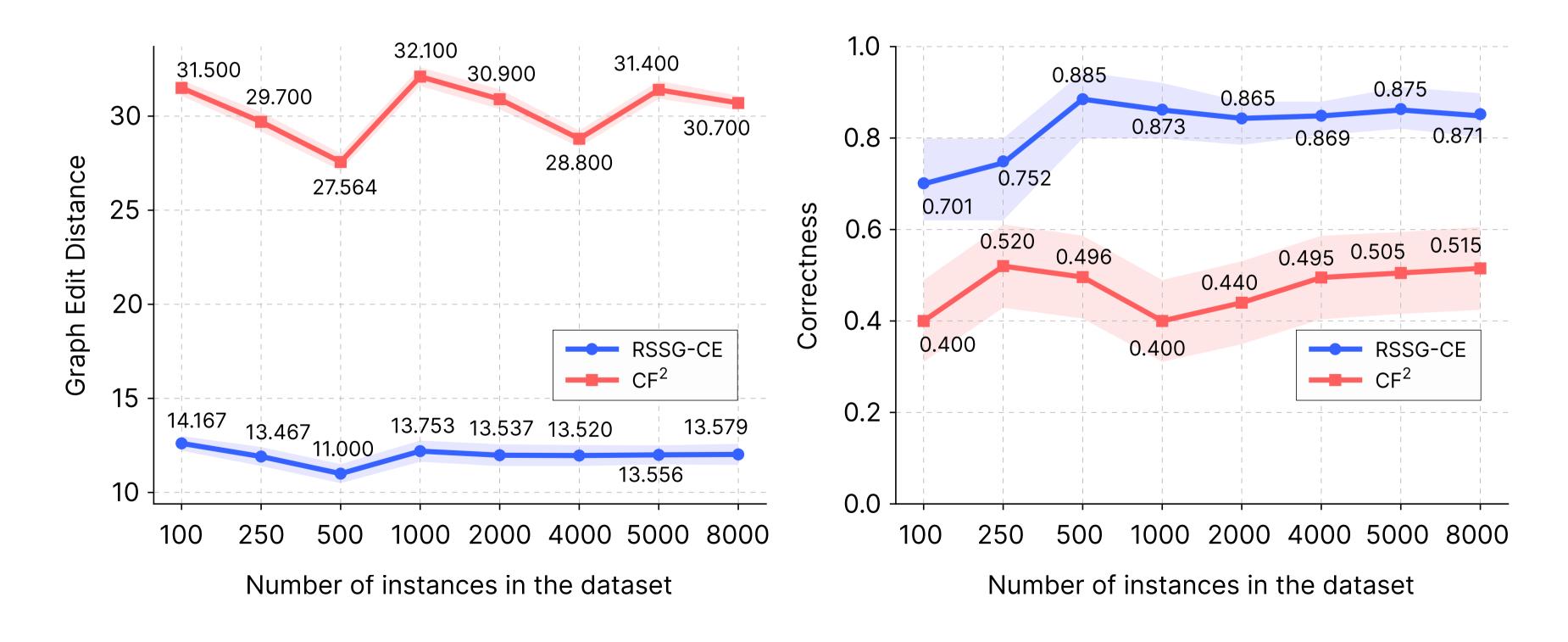
Even when the number of cycles increases, we don't need as many edge-cutting operations.



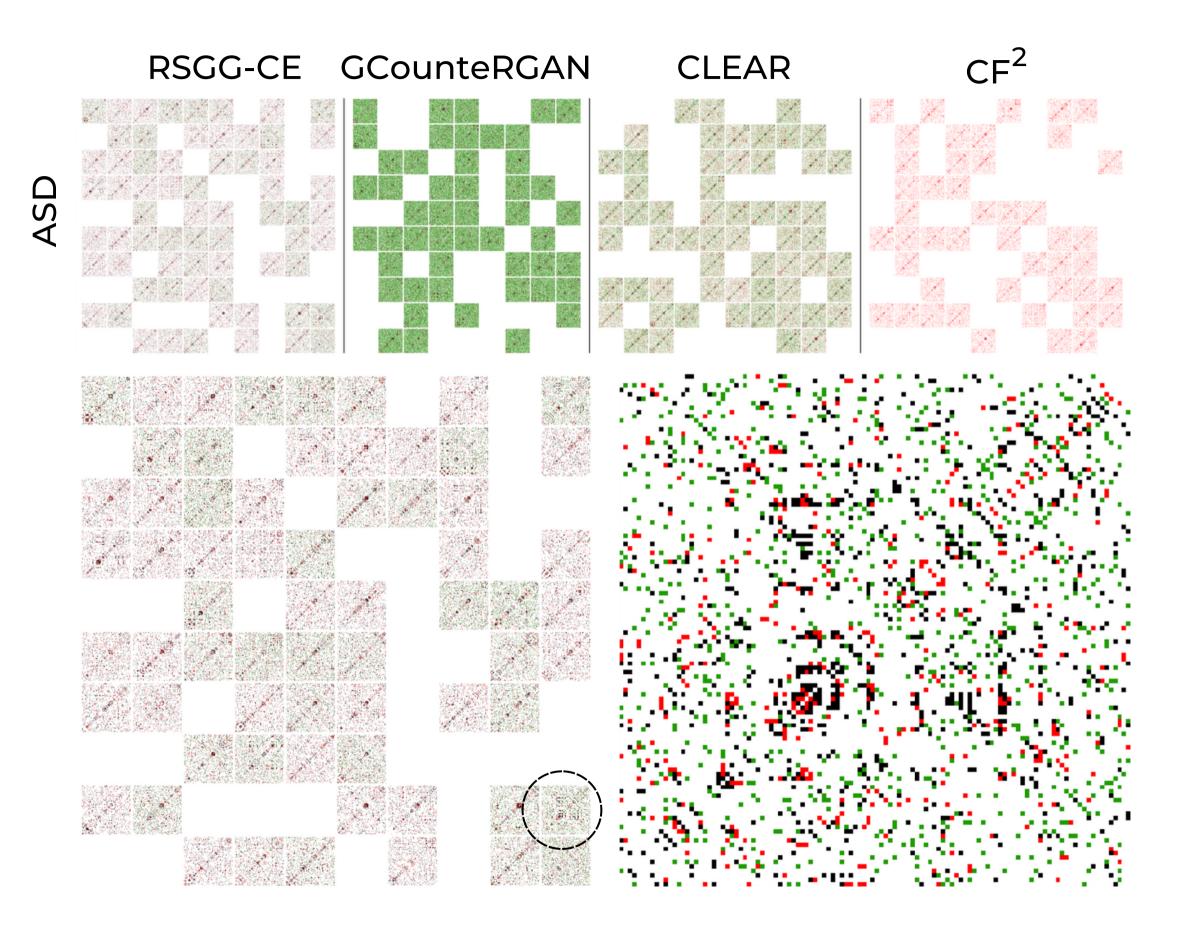
We don't care about larger graphs. Results depend only on dataset complexity.



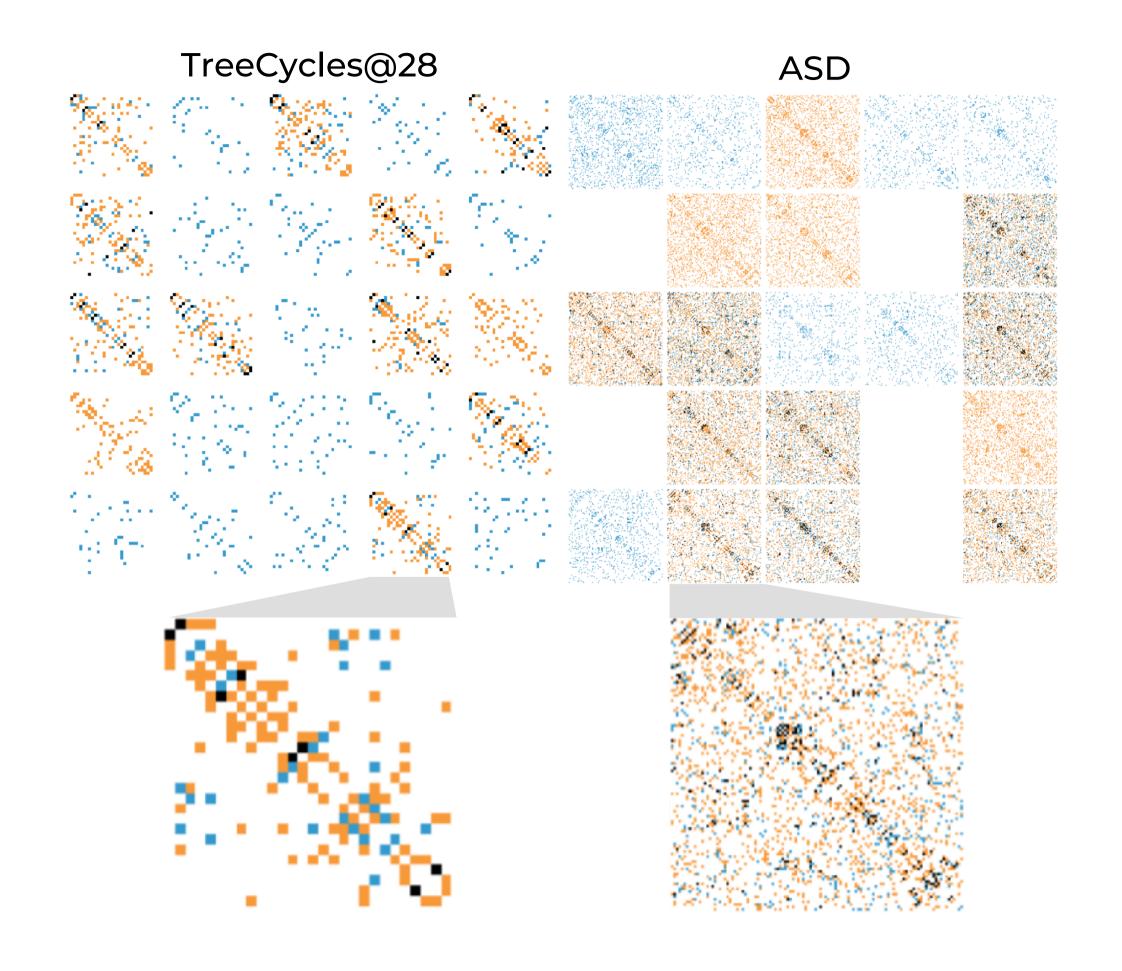
Performance stabilizes when the number of instances is greater than 250.



We can do both edge additions and removals



We perform a lot less perturbation on the graphs vs CLEAR



References

- 1 Abrate, C.; and Bonchi, F. 2021. Counterfactual graphs for explainable classification of brain networks. In KDD'21
- 2 Liu, Y.; Chen, C.; Liu, Y.; Zhang, X.; and Xie, S. 2021. Multi-objective Explanations of GNN Predictions. In ICDM'21
- 3 Nguyen, T. M.; Quinn, T. P.; Nguyen, T.; and Tran, T. 2022. Explaining Black Box Drug Target Prediction through Model Agnostic Counterfactual Samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics
- 4 Numeroso, D.; and Bacciu, D. 2021. Meg: Generating molecular counterfactual explanations for deep graph networks. In IJCNN'21
- Ma, J.; Guo, R.; Mishra, S.; Zhang, A.; and Li, J. 2022. *CLEAR: Generative Counterfactual Explanations on Graphs*. In **NeurIPS'22**
- 6 Nemirovsky, D.; Thiebaut, N.; Xu, Y.; and Gupta, A. 2022. CounteRGAN: Generating counterfactuals for real-time recourse and interpretability using residual GANs. In UAI'22
- Prado-Romero, M. A.; Prenkaj, B.; and Stilo, G. 2023. Revisiting CounteRGAN for Counterfactual Explainability of Graphs. In ICLR'23 @ Tiny Paper Track

Food for Thought

Finding counterfactuals is mathematically equivalent to adversarially attacking a predictor, but they have different social connotations

